US009448706B2

United States Patent

(12) (10) Patent No.: US 9,448,706 B2
Giffel 45) Date of Patent: Sep. 20, 2016
(54) LOOP REMOVAL IN ELECTRONIC DESIGN 6,535,213 B1* 3/2003 Ogino et al. 345/442
AUTOMATION 6,718,293 B1* 4/2004 Haetaloeeevvrne.. 703/13
6,816,170 B1* 11/2004 Udeshicccoueenne GO6T 3/403
. 345/472
(75) Inventor: Barry A. Giffel, Wake Forest, NC (US) 7,256,388 B2* /2007 Eglington et al. 250/221
. . . 7,320,119 B2* 12008 Melvin et al. .. . 716/52
(73) Assignee: SYNOPSYS, INC., Mountain View, 7,463,258 Bl * 12/2008 Drury et al. ... 345/423
CA (US) 8,036,433 B1* 10/2011 Wolff 382/119
2001/0033289 Al* 10/2001 Graham ... 345/619
* o B B B B 2002/0181796 Al* 12/2002 Yoshizawa .. 382/256
() NOtlce' SubJeCt. to any ddlsglalmeé’. the tderm(iofthls 2004/0172149 Al 3k 9/2004 Eto 700/95
patent is extended or adjusted under 35 2006/0248499 Al* 11/2006 Sezginer et al. .ccooo...... 716/21
U.S.C. 154(b) by 643 days. 2006/0265677 Al* 11/2006 Scheffer et al. 716/5
2007/0038955 Al* 2/2007 Nguyen ... 715/804
(21) Appl. No.: 12/582,264 2007/0109310 AL* 52007 XU .ccooereivinrcen GO6T 15/02
345/581
Tad. 2008/0259078 Al* 10/2008 Dokken et al. 345/423
(22) Filed: Oct. 20, 2009 2009/0027396 Al* 1/2009 Frisken 345/442
. L. 2009/0136136 Al* 5/2009 Mori et al. ... 382/187
(65) Prior Publication Data 2009/0245645 Al* 10/2009 Xing 382/189
2009/0307639 Al* 12/2009 Chapman et al. 716/4
US 2011/0025705 Al Feb. 3, 2011 2010/0185996 Al* 7/2010 El Yahyaoui et al. 716/10
3k
Related U.S. Application Data 2010/0265255 Al* 10/2010 Iwamoto 345/442
(60) Provisional application No. 61/229.461, filed on Jul. * cited by examiner
29, 2009. Primary Examiner — Anh-Tuan V Nguyen
(51) Int. CL (74) Attorney, Agent, or Firm — Park, Vaughan, Fleming &
G09G 5/00 (2006.01) Dowler LLP; Laxman Sahasrabuddhe
GOG6F 3/0484 (2013.01)
(52) US.CL &7 ABSTRACT
CPC G06F 3/04845 (201301) Some embodiments provide a System that facilitates graphi_
(58) Field of Classification Search cal object creation in an electronic design automation (EDA)
None application. During operation, the system uses a cursor to
See application file for complete search history. obtain a sequence of points from a user for creating a
. graphical object in a layout. Next, the system detects a loop
(56) References Cited in the graphical object based at least on the sequence of
US. PATENT DOCUMENTS points and a current position of the cursor. Finally, the
system modifies the sequence of points to remove the loop
4,686,522 A * 8/1987 Hemnandez Go6F 3/0481 from the graphical object.
345/160
5,867,172 A * 2/1999 Fujisawa et al. 345/467 18 Claims, 6 Drawing Sheets
302
Visual Representation
A
r A\
306 304
tg Pointer Sequence
A
30§ 31 O e ~
Point Point
N e Point 308
Point 31
316 el o 310
Intersection | Point 312
Point Point 314
Pointer 306
~
314 312
Point

Point

US 9,448,706 B2

Sheet 1 of 6

Sep. 20, 2016

U.S. Patent

W E
ocl
‘dold 8¢l acl vel 4 0ch 8Ll 911188l viL JUSA ¢l
erq "oueyug uoneayusp { joenx3 e (Juswsidw| (Buiuueld (uoneouusp { Jojubiseg -oun4 pue { ubiseq
YSE uolnjosey [eaisAud SISAjeuy [eaisAud ubisa(g ISIION B SISSYUAS \ubise(21607 \ waisAs
\ Y
091
Obi 001
wm_: Aquessy 0S} B eap)
Iyo k' Uoljeduqe
BuiBexpey v pnpoid

U.S. Patent

Sep. 20, 2016 Sheet 2 of 6

US 9,448,706 B2

200
EDA Application

202
GUI
204
Pointer
206
Layout
208
Point ¢ o0
212 214
Loop-Detection p——»| Loop-Removal
Apparatus Apparatus

FIG. 2

U.S. Patent Sep. 20, 2016 Sheet 3 of 6 US 9,448,706 B2
302
Visual Representation
Al
r A\
306 304
% Pointer Sequence
A
308 310 - N
Point Point
p v Point 308
116 et Po!nt 310
Intersection Point 312
Point Point 314
Pointer 306
S
314 Point
Point
FIG. 3A
302
Visual Representation
A
s N < 304
equence
306 A
Pointer r A
308 Point 308
- Pont |:> Intersection Point 316
Pointer 306
X
316
Intersection
Point

FIG. 3B

U.S. Patent

Sep. 20, 2016 Sheet 4 of 6

Use pointer to obtain sequence of points
from user for creating graphical object in
layout
402

!

Append current position of pointer to
sequence of points
404

!

Detect loop in graphical object based on
sequence of points and current position of
pointer
406

v

Modify sequence of points to remove loop
from graphical object
408

End

FIG. 4

US 9,448,706 B2

U.S. Patent Sep. 20, 2016 Sheet 5 of 6 US 9,448,706 B2

Determine a line segment between
current position of pointer and last
point in sequence of points
502

!

Compare the line segment with a

another line segment between two ves y
= consecutive points in sequence of Remove points added after the
points earlier of the two consecutive points
504 from sequence of points

510

!

Append two points to the sequence
of points: the intersection point and
the current position of the pointer

No 512

Intersection found?
506

Line segments remaining?

No End

Yes

FIG. 5

U.S. Patent Sep. 20, 2016 Sheet 6 of 6 US 9,448,706 B2

600
o
612

FIG. 6

US 9,448,706 B2

1
LOOP REMOVAL IN ELECTRONIC DESIGN
AUTOMATION

RELATED APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation No. 61/229,461, entitled “Self Intersecting Loop
Removal,” by Barry Andrew Giffel, filed 29 Jul. 2009, the
contents of which are herein incorporated by reference.

BACKGROUND

1. Technical Field

This disclosure relates to electronic design automation
(EDA). More specifically, this disclosure relates to a method
and system for removing loops in EDA layouts.

2. Related Art

Electronic design automation (EDA) tools for producing
layouts typically include mechanisms for placing circuit
cells and other elements on an integrated circuit floor plan,
as well as mechanisms for routing interconnections between
the elements of the integrated circuit. Within a layout,
geometric objects such as polygons may represent integrated
circuit elements, while paths between the geometric objects
may represent wires that electrically couple the integrated
circuit elements. To create the layout, a user may interact
with a graphical user interface (GUI) for an EDA application
and/or use an EDA tool. For example, the user may draw and
position some of the geometric objects and paths in the
layout using a cursor (e.g., a mouse pointer) provided by the
GUI, while other geometric objects and paths may be
automatically created in the layout by a place-and-route tool
and/or a schematic-driven-layout tool.

However, drawing mechanisms associated with layout
creation may introduce errors and/or inefficiencies in the
design of integrated circuits. In particular, loops may be
undesirable in the drawing of both polygons and paths in a
layout. For example, loops may cause polygons to be
self-intersecting and may introduce additional overhead in
the handling of integrated circuit elements by EDA tools.
Similarly, loops in wires may require removal during veri-
fication of the layout to prevent problems associated with the
manufacturing of integrated circuits based on the layout.

SUMMARY

Some embodiments provide a system that facilitates
graphical object creation in an electronic design automation
(EDA) application. During operation, the system uses a
cursor (e.g., a mouse pointer) to obtain a sequence of points
from a user for creating a graphical object in a layout. For
example, the graphical object can be associated with a path
or a polygon. Next, the system detects a loop in the graphical
object based at least on the sequence of points and a current
position of the cursor. Finally, the system modifies the
sequence of points to remove the loop from the graphical
object. The system may append the current position of the
cursor to the sequence of points. Alternatively, the system
may keep track of the current position of the cursor sepa-
rately, i.e., not as part of the sequence of points.

In some embodiments, detecting the loop in the graphical
object involves determining a line segment between the
current position of the cursor and the last point in the
sequence of points, and determining whether the line seg-
ment intersects with another line segment between any two
consecutive points in the sequence of points. Specifically, in
some embodiments, the system can examine, in order, line

10

15

20

25

30

35

40

45

50

55

60

65

2

segments between consecutive points in the sequence of
points for intersection with the line segment between the
current position of the cursor and the last point in the
sequence of points.

Once the system identifies the earliest two consecutive
points in the sequence of points such that the line segment
between the two consecutive points intersects with the line
segment between the current position of the cursor and the
last point in the sequence of points, the system can modify
the sequence of points to remove the loop. Specifically, the
system can remove, from the sequence of points, points
added after the earlier of the two consecutive points. Next,
the system can append the intersection point to the sequence
of points. Further, in some embodiments, the system can add
the current position of the cursor to the sequence of points.
The system can also remove the loop from a visual repre-
sentation of the graphical object on a display screen.

In some embodiments, the sequence of points is modified
prior to obtaining a new point for inclusion in the sequence
of points from the user. Specifically, as the user moves the
cursor on the GUI, the system can automatically detect and
remove loops without waiting for the user to indicate the
location of the next point. In other embodiments, the system
can wait for the user to indicate the location of the next point
and then detect and remove loops.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows a workflow associated with the design and
fabrication of an integrated circuit in accordance with an
embodiment.

FIG. 2 shows an electronic design automation (EDA)
application in accordance with an embodiment.

FIG. 3A shows an exemplary graphical object in accor-
dance with an embodiment.

FIG. 3B shows an exemplary graphical object in accor-
dance with an embodiment.

FIG. 4 shows a flowchart illustrating the process of
facilitating graphical object creation in an EDA application
in accordance with an embodiment.

FIG. 5 shows a flowchart illustrating the process of
detecting and removing a potential loop in a graphical object
in accordance with an embodiment.

FIG. 6 shows a computer system in accordance with an
embodiment.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the embodiments,
and is provided in the context of a particular application and
its requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled in the
art, and the general principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the present disclosure. Thus, the
present invention is not limited to the embodiments shown,
but is to be accorded the widest scope consistent with the
principles and features disclosed herein.

The data structures and code described in this detailed
description are typically stored on a computer-readable
storage medium, which may be any device or medium that
can store code and/or data for use by a computer system. The
computer-readable storage medium includes, but is not
limited to, volatile memory, non-volatile memory, magnetic
and optical storage devices such as disk drives, magnetic
tape, CDs (compact discs), DVDs (digital versatile discs or

US 9,448,706 B2

3

digital video discs), or other media capable of storing code
and/or data now known or later developed.

The methods and processes described in the detailed
description section may be embodied as code and/or data,
which can be stored in a computer-readable storage medium
as described above. When a computer system reads and
executes the code and/or data stored on the computer-
readable storage medium, the computer system performs the
methods and processes embodied as data structures and code
and stored within the computer-readable storage medium.

Furthermore, methods and processes described herein can
be included in hardware modules or apparatus. These mod-
ules or apparatus may include, but are not limited to, an
application-specific integrated circuit (ASIC) chip, a field-
programmable gate array (FPGA), a dedicated or shared
processor that executes a particular software module or a
piece of code at a particular time, and/or other program-
mable-logic devices now known or later developed. When
the hardware modules or apparatus are activated, they per-
form the methods and processes included within them.

FIG. 1 shows a workflow associated with the design and
fabrication of an integrated circuit in accordance with an
embodiment. The workflow may begin with a product idea
(step 100), which may be realized using an integrated circuit
that is designed using an electronic design automation
(EDA) process (step 110). After the integrated circuit design
is finalized, the design may undergo a fabrication process
(step 150) and a packaging and assembly process (step 160)
to produce chips 170.

The EDA process (step 110) includes steps 112-130,
which are described below for illustrative purposes only and
are not meant to limit the present invention. Specifically, the
steps may be performed in a different sequence than the
sequence described below.

During system design (step 112), circuit designers may
describe the functionality to be implemented in the inte-
grated circuit. They may also perform what-if planning to
refine functionality, check costs, etc. Hardware-software
architecture partitioning may also occur at this stage. Exem-
plary EDA software products from Synopsys, Inc. that may
be used at this step include Model Architect, Saber®,
System Studio, and DesignWare®.

During logic design and functional verification (step 114),
the VHDL or Verilog code for modules in the system may be
written and the design may be checked for functional
accuracy, (e.g., the design may be checked to ensure that it
produces the correct outputs). Exemplary EDA software
products from Synopsys, Inc. that may be used at this step
include VCS®, Vera®, Design Ware®, Magellan™, Formal-
ity®, ESP and Leda®.

During synthesis and design for test (step 116), the
VHDL/Verilog may be translated to a netlist. Further, the
netlist may be optimized for the target technology, and tests
may be designed and implemented to check the finished
chips. Exemplary EDA software products from Synopsys,
Inc. that may be used at this step include Design Compiler®,
Physical Compiler®, Test Compiler, Power Compiler™,
FPGA Compiler, TetraMAX®, and DesignWare®.

During netlist verification (step 118), the netlist may be
checked for compliance with timing constraints and for
correspondence with the VHDL/Verilog source code. Exem-
plary EDA software products from Synopsys, Inc. that may
be used at this step include Formality®, PrimeTime®, and
VCS®.

During design planning (step 120), an overall floorplan
for the chip may be constructed and analyzed for timing and

10

15

20

25

30

35

40

45

50

55

60

65

4

top-level routing. Exemplary EDA software products from
Synopsys, Inc. that may be used at this step include Astro™
and IC Compiler products.

During physical implementation (step 122), circuit ele-
ments may be positioned in the layout (placement) and may
be electrically coupled (routing). Exemplary EDA software
products from Synopsys, Inc. that may be used at this step
include Astro™ and IC Compiler products.

During analysis and extraction (step 124), the circuit’s
functionality may be verified at a transistor level and para-
sitics may be extracted. Exemplary EDA software products
from Synopsys, Inc. that may be used at this step include
AstroRail™, PrimeRail, PrimeTime®, and Star-RCXTT™,

During physical verification (step 126), the design may be
checked to ensure correctness for manufacturing, electrical
issues, lithographic issues, and circuitry. Hercules™ is an
exemplary EDA software product from Synopsys, Inc. that
may be used at this step.

During resolution enhancement (step 128), geometric
manipulations may be performed on the layout to improve
manufacturability of the design. Exemplary EDA software
products from Synopsys, Inc. that may be used at this step
include Proteus/ProGen, ProteusAF, and PSMGen.

During mask data preparation (step 130), the design may
be “taped-out” to produce masks that are used during
fabrication.

FIG. 2 shows an EDA application 200 in accordance with
an embodiment. As shown in FIG. 2, EDA application 200
includes a graphical user interface (GUI) 202, a layout 206,
a loop-detection apparatus 212, and a loop-removal appa-
ratus 214. Each of these components is described in further
detail below.

Layout 206 may correspond to a representation of an
integrated circuit that uses graphical objects to represent
patterns of metal, oxide, and/or semiconductor layers that
make up the integrated circuit. Such graphical objects may
include polygons that represent integrated circuit elements
(e.g., transistors, resistors, capacitors, etc.) and paths repre-
senting wires that electrically couple the integrated circuit
elements. Furthermore, a graphical object in layout 206 may
be created by using a sequence of points 208-210 in layout
206.

In particular, points 208-210 may represent vertices in a
polygon, with pairs of consecutive points in the sequence
defining the edges of the polygon. For example, a sequence
of five points may represent a quadrilateral if the first and
fifth points contain the same value (e.g., coordinates). Edges
of the quadrilateral may thus be drawn between the first and
second points, the second and third points, the third and
fourth points, and the fourth and fifth points. On the other
hand, points 208-210 may specify a path in layout 206, with
pairs of consecutive points in the sequence defining straight
line segments that connect to form the path. For example, an
L-shaped path may be denoted by three points and drawn by
connecting the first and second points and the second and
third points with two line segments.

In one or more embodiments, EDA application 200 is
used to create layout 206. For example, EDA application
200 may include an integrated-circuit-layout editor, a place-
and-route tool, and/or a schematic-driven-layout tool. To
create layout 206, a user of EDA application 200 may create
a graphical object by providing the sequence of points
208-210 representing the graphical object to EDA applica-
tion 200.

In one or more embodiments, the user specifies points
208-210 within EDA application 200 using a cursor 204
provided by GUI 202. Cursor 204 may correspond to a

US 9,448,706 B2

5

symbol (e.g., an arrow symbol or a hand symbol) appearing
in GUI 202 that allows the user to provide graphical input to
EDA application 200. For example, the user may draw paths
and/or polygons in layout 206 by moving cursor 204 using
a pointing device (e.g., mouse) and selecting locations in
GUI 202 corresponding to the positions of points 208-210.
Alternatively, the graphical input may be based on tactile
input provided by a user through a touch screen. GUI 202
may then store the coordinates (e.g., x-coordinate, y-coor-
dinate) of each selected location as a point 208-210 in the
sequence. Using cursor 204 to create graphical objects by
selecting points 208-210 within GUI 202 is discussed in
further detail below with respect to FIG. 3A.

Those skilled in the art will appreciate that the existence
of loops in graphical objects within layout 206 may com-
plicate the creation of integrated circuits from layout 206.
Loops in polygons may cause the polygons to be self-
intersecting and may increase the overhead associated with
the handling of polygons by EDA application 200. Further-
more, loops in paths representing wires may require removal
during verification of layout 206 to prevent issues with the
manufacturing of the integrated circuits from layout 206.

To mitigate issues associated with loops in layout 206,
EDA application 200 may include functionality to detect and
remove loops during creation of layout 206. In particular,
loop-detection apparatus 212 may detect a loop in a graphi-
cal object as the user draws the graphical object by analyzing
the sequence of points 208-210 representing the graphical
object and the current position of cursor 204. GUI 202 may
allow loop-detection apparatus 212 to access the current
position of cursor 204 by appending the current position of
cursor 204 to the sequence of points 208-210.

Loop-detection apparatus 212 may then determine if a
line segment between the last point 210 in the sequence and
the current position of cursor 204 intersects with another line
segment between two other consecutive points in the
sequence. Note that the line segment between the last point
210 in the sequence and the current position of cursor 204
may intersect with multiple line segments between two
consecutive points in the sequence of points. Loop-detection
apparatus 212 may detect the earliest instance of an inter-
section by examining, in order, line segments between
consecutive points in the sequence for intersection with the
first line segment between point 210 and the current position
of cursor 204. For example, if the sequence contained four
points, loop-detection apparatus 212 may examine the line
segment between the first and second points, then the line
segment between the second and third points, and finally the
line segment between the third and fourth points for inter-
section with the line segment between the fourth point and
the current position of cursor 204.

If a loop is detected, loop-removal apparatus 214 may
modify the sequence of points 208-210 to remove the loop
from the graphical object. In one or more embodiments,
loop-removal apparatus 214 modifies points 208-210 by
removing points added after the earlier of the two consecu-
tive points defining the earliest line segment that intersects
with the first line segment. Loop-removal apparatus 214
may then append the intersection point to the sequence and
append the current position of the cursor to the sequence
after the intersection point. In other words, loop-removal
apparatus 214 may remove points representing the loop from
the sequence, which in effect removes the loop from the
graphical object. GUI 202 may then remove the loop from
a visual representation of the graphical object that is dis-
played to the user (e.g., through a display screen). Modify-

10

15

20

25

30

35

40

45

50

55

60

65

6

ing points to remove loops in graphical objects is discussed
in further detail below with respect to FIG. 3B.

Those skilled in the art will appreciate that the function-
ality of loop-detection apparatus 212 and loop-removal
apparatus 214 may be implemented in a variety of ways. For
example, loop-detection apparatus 212 and loop-removal
apparatus 214 may be provided by the same module within
EDA application 200, or loop-detection apparatus 212 and
loop-removal apparatus 214 may execute as separate mod-
ules from one another and/or as separate applications from
EDA application 202. Moreover, loop-detection apparatus
212 and loop-removal apparatus 214 may detect and remove
loops in graphical objects at various times during the cre-
ation of layout 206. For example, loop-detection apparatus
212 and loop-removal apparatus 214 may detect and remove
a loop in a graphical object prior to obtaining a new point for
inclusion in the sequence of points 208-210 from the user.
On the other hand, the operation of loop-detection apparatus
212 and loop-removal apparatus 214 may be triggered by the
selection of a new point for inclusion in the sequence to
ensure that the new point does not form a loop in the
graphical object. Finally, loop-detection apparatus 212 and/
or loop-removal apparatus 214 may be enabled or disabled
within EDA application 200 based on the user’s preferences.

FIG. 3A shows an exemplary graphical object in accor-
dance with an embodiment. More specifically, FIG. 3A
shows a visual representation 302 of the graphical object and
a sequence 304 of points associated with the graphical
object. As described above, the graphical object may corre-
spond to a polygon or a path in a layout, such as layout 206
of FIG. 2. The graphical object may be defined by sequence
304, which contains points 308-314 selected by a cursor 306
in a particular order. Visual representation 302 may be
drawn by connecting pairs of points 308-314 in sequence
304 with line segments in the order in which points 308-314
were selected. As shown in FIG. 3A, point 308 is the first
point in sequence 304, point 310 is the second point, point
312 is the third point, and point 314 is the last point in
sequence 304. Consequently, line segments are drawn
between points 308-310, points 310-312, and points 312-
314 in visual representation 302. In addition, a line segment
is drawn between point 314 and cursor 306 to represent the
next potential line segment in the graphical object.

As mentioned previously, loops in the graphical object
may be detected and removed as the graphical object is
drawn. To detect a loop, the current position of cursor 306
may be appended to sequence 304 and analyzed along with
points 308-314 for intersecting line segments in the graphi-
cal object. Particularly, a first line segment between point
314 and cursor 306 may be determined. Line segments
between consecutive points in sequence 304 may then be
examined from beginning to end for intersection with the
first line segment. For example, line segments between
points 308-310, points 310-312, and points 312-314 may be
examined, in order, for intersection with the first line seg-
ment until an intersection is found or all line segments
between points 308-314 have been examined. Alternatively,
intersecting line segments in the graphical object may be
determined using other techniques, such as a sweep line
technique.

Because an intersection point 316 exists between the first
line segment and a second line segment between points
308-310, a loop is found in the graphical object. To prevent
errors and inefficiencies associated with processing the
layout, the loop may be removed as the graphical object is
drawn using cursor 306. For example, the loop may be
removed after cursor 306 remains in a position that creates

US 9,448,706 B2

7

a loop in the graphical object beyond a specified period, or
the loop may be removed after a new point in sequence 304
is selected using cursor 306.

FIG. 3B shows an exemplary graphical object in accor-
dance with an embodiment. More specifically, FIG. 3B
shows visual representation 302 and sequence 304 after the
loop is removed from the graphical object of FIG. 3A. To
remove the loop, points in sequence 304 after the earlier of
the two consecutive points 308-310 (e.g., point 308) defin-
ing the line segment that intersects with the first line segment
are deleted from sequence 304. In other words, points that
form the loop are removed from sequence 304 to effectively
remove the loop from the graphical object. Next, intersec-
tion point 316 and the current position of cursor 306 are
appended to the shortened sequence 304 to form a new
representation of the graphical object without the loop.

Visual representation 302 is also updated using the new
sequence 304 of points. As shown in FIG. 3B, visual
representation 302 includes a line segment from point 308 to
intersection point 316, and another line segment from inter-
section point 316 to cursor 306. The graphical object may
continue to be drawn by adding points to sequence 304 using
cursor 306. Furthermore, loops that are subsequently created
in the graphical object may be detected and removed in the
same manner as the loop in FIG. 3A.

FIG. 4 shows a flowchart illustrating the process of
facilitating graphical object creation in an EDA application
in accordance with an embodiment. In one or more embodi-
ments, one or more of the steps may be omitted, repeated,
and/or performed in a different order. Accordingly, the
specific arrangement of steps shown in FIG. 4 should not be
construed as limiting the scope of the embodiments.

Initially, a cursor is used to obtain a sequence of points
from a user for creating a graphical object in a layout
(operation 402). The graphical object may be associated
with a path or polygon in the layout; a path may represent
a wire in an integrated circuit, while a polygon may repre-
sent an element in the integrated circuit. The cursor may be
provided by a GUI associated with the EDA application.
Next, the current position of the cursor is appended to the
sequence of points (operation 404).

A loop in the graphical object is then detected based on
the sequence of points and the appended current position of
the cursor (operation 406). The loop may be formed by the
intersection of two or more line segments in the graphical
object. For example, the loop may be created if the line
segment between the last point in the sequence of points and
the current position of the cursor intersects an earlier line
segment between two consecutive points in the sequence of
points. Finally, the sequence of points is modified to remove
the loop from the graphical object (operation 408). As
mentioned above, the loop may be removed prior to obtain-
ing a new point for inclusion in the sequence of points, or the
loop may be removed after the new point is obtained to
ensure that the new point does not add the loop to the
graphical object.

FIG. 5 shows a flowchart illustrating the process of
detecting and removing a potential loop in a graphical object
in accordance with an embodiment. In one or more embodi-
ments, one or more of the steps may be omitted, repeated,
and/or performed in a different order. Accordingly, the
specific arrangement of steps shown in FIG. 5 should not be
construed as limiting the scope of the embodiments.

A cursor may be used to obtain new points for inclusion
in the sequence and may inadvertently form a loop in the
graphical object. To detect the loop, a line segment between
the current position of a cursor and the last point in the

10

15

20

25

30

35

40

45

50

55

60

65

8

sequence of points representing the graphical object is
determined (operation 502). Next, the line segment is com-
pared with another line segment between two consecutive
points in the sequence of points (operation 504). In particu-
lar, the line segment between the current position of a cursor
and the last point in the sequence of points may be compared
with individual line segments in the graphical object in the
order in which the line segments were created.

An intersection may be found (operation 506) between the
line segment between the current position of a cursor and the
last point in the sequence of points and the line segment
between two consecutive points in the sequence of points. If
an intersection is found, points added after the earlier of the
two consecutive points are removed from the sequence of
points (operation 510). In other words, if the two consecu-
tive points in the sequence of points are u followed by v, the
points that come after the point u are removed. Next, two
points are appended to the sequence of points: the intersec-
tion point and the current position of the cursor (operation
512).

However, if no intersection is found, and if there are
remaining line segments (operation 508), the remaining line
segments may then be compared. Specifically, the line
segment formed by the next two consecutive points (opera-
tion 504) can then be used to determine whether an inter-
section exists (operation 506). For example, if point w
follows points u and v in the sequence of points, the line
segment between points v and w would be the next line
segment that would be considered. If an intersection is
found, the sequence of points is modified to remove the loop
(operations 510-512). If no intersection is found, compari-
sons may continue until an intersection is found or all line
segments defined by the sequence of points have been
compared.

FIG. 6 shows a computer system 600 in accordance with
an embodiment. Computer system 600 includes a processor
602, memory 604, storage 606, and/or other components
found in electronic computing devices. Processor 602 may
support parallel processing and/or multi-threaded operation
with other processors in computer system 600. Computer
system 600 may also include input/output (I/O) devices such
as a keyboard 608, a mouse 610, and a display 612.

Computer system 600 may include functionality to
execute various components of the present embodiments. In
particular, computer system 600 may include an operating
system (not shown) that coordinates the use of hardware and
software resources on computer system 600, as well as one
or more applications that perform specialized tasks for the
user. To perform tasks for the user, applications may obtain
the use of hardware resources on computer system 600 from
the operating system, as well as interact with the user
through a hardware and/or software framework provided by
the operating system.

In one or more embodiments, computer system 600
provides a system for facilitating the creation of graphical
objects in an EDA application. The system may include a
GUI that uses a cursor to obtain a sequence of points from
a user for creating a graphical object in a layout. The system
may also include a loop-detection apparatus that detects a
loop in the graphical object based on the sequence of points
and a current position of the cursor. Finally, the system may
include a loop-removal apparatus that modifies the sequence
of points to remove the loop from the graphical object.

In addition, one or more components of computer system
600 may be remotely located and coupled to the other
components over a network. Portions of the present embodi-
ments (e.g., GUI, loop-detection apparatus, loop-removal

US 9,448,706 B2

9

apparatus, etc.) may also be located on different nodes of a
distributed system that implements the embodiments. For
example, the present embodiments may be implemented
using a cloud computing system that enables the creation of
layouts on a remote EDA application.

The foregoing descriptions of various embodiments have
been presented only for purposes of illustration and descrip-
tion. They are not intended to be exhaustive or to limit the
present invention to the forms disclosed. Accordingly, many
modifications and variations will be apparent to practitioners
skilled in the art. Additionally, the above disclosure is not
intended to limit the present invention.

What is claimed is:

1. A computer-implemented method for facilitating
graphical object creation in an integrated circuit design
layout by using an electronic design automation (EDA)
application, comprising:

obtaining a new point, the new point being a current

position of a cursor, for inclusion in a sequence of
points to create a graphical object in the integrated
circuit design layout;
determining a last rectilinear line segment between the
new point and the last point in the sequence of points;

examining, in order from the first point in the sequence of
points to the last point in the sequence of points, line
segments between consecutive points in the sequence
of points to detect an intersection with the last recti-
linear line segment;

in response to detecting an intersection between a line

segment corresponding to two consecutive points and

the last rectilinear line segment,

removing, from the sequence of points, all points added
after the earlier of the two consecutive points, and

appending the intersection point to the sequence of
points;

appending the new point to the sequence of points; and

displaying a visual representation of the graphical object

using the sequence of points including the intersection
point and the new point.

2. The computer-implemented method of claim 1,
wherein the graphical object is associated with a path or a
polygon.

3. The method of claim 1, wherein prior to detecting an
intersection between a line segment corresponding to two
consecutive points and the last rectilinear line segment, the
method further comprising:

displaying the visual representation of the graphical

object using the sequence of points including the new
point.

4. The method of claim 3, wherein after appending the
intersection point to the sequence of points, the method
further comprising:

modifying the visual representation of the graphical

object by removing a loop created by the intersection
between the line segment corresponding to the two
consecutive points and the last rectilinear line segment.

5. The method of claim 4, wherein the visual representa-
tion is modified prior to obtaining another new point for
inclusion in the sequence of points.

6. The method of claim 4, wherein modifying the visual
representation includes displaying a line segment from the
intersection point to the new point.

7. A system for facilitating graphical object creation in an
integrated circuit design layout by using an electronic design
automation (EDA) application, comprising:

15

20

30

40

45

10

a processor; and
a non-transitory storage medium storing instructions that,
when executed by the processor, cause the system to
perform a method, the method comprising:
obtaining a new point, the new point being a current
position of a cursor, for inclusion in a sequence of
points to create a graphical object in the integrated
circuit design layout;
determining a last rectilinear line segment between the
new point and the last point in the sequence of
points;
examining, in order from the first point in the sequence
of points to the last point in the sequence of points,
line segments between consecutive points in the
sequence of points to detect an intersection with the
last rectilinear line segment;
in response to detecting an intersection between a line
segment corresponding to two consecutive points
and the last rectilinear line segment,
removing, from the sequence of points, all points
added after the earlier of the two consecutive
points, and
appending the intersection point to the sequence of
points;
appending the new point to the sequence of points; and
displaying a visual representation of the graphical
object using the sequence of points including the
intersection point and the new point.

8. The system of claim 7, wherein the graphical object is
associated with a path or a polygon.

9. The system of claim 7, wherein prior to detecting an
intersection between a line segment corresponding to two
consecutive points and the last rectilinear line segment, the
method further comprising:

displaying the visual representation of the graphical

object using the sequence of points including the new
point.

10. The system of claim 9, wherein after appending the
intersection point to the sequence of points, the method
further comprising:

modifying the visual representation of the graphical

object by removing a loop created by the intersection
between the line segment corresponding to the two
consecutive points and the last rectilinear line segment.

11. The system of claim 10, wherein the visual represen-
tation is modified prior to obtaining another new point for
inclusion in the sequence of points.

12. The system of claim 10, wherein modifying the visual
representation includes displaying a line segment from the
intersection point to the new point.

13. A non-transitory computer-readable storage medium
storing instructions that when executed by a computer cause
the computer to perform a method for facilitating graphical
object creation in an integrated circuit design layout by
using an electronic design automation (EDA) application,
the method comprising:

obtaining a new point, the new point being a current

position of a cursor, for inclusion in a sequence of
points to create a graphical object in the integrated
circuit design layout;
determining a last rectilinear line segment between the
new point and the last point in the sequence of points;

examining, in order from the first point in the sequence of
points to the last point in the sequence of points, line
segments between consecutive points in the sequence
of points to detect an intersection with the last recti-
linear line segment;

US 9,448,706 B2

11

in response to detecting an intersection between a line
segment corresponding to two consecutive points and
the last rectilinear line segment,
removing, from the sequence of points, all points added
after the earlier of the two consecutive points, and
appending the intersection point to the sequence of
points;

appending the new point to the sequence of points; and

displaying a visual representation of the graphical object

using the sequence of points including the intersection
point and the new point.

14. The computer-readable storage medium of claim 13,
wherein the graphical object is associated with a path or a
polygon.

15. The computer-readable storage medium of claim 13,
wherein prior to detecting an intersection between a line
segment corresponding to two consecutive points and the
last rectilinear line segment, the method further comprising:

5

15

12

displaying the visual representation of the graphical
object using the sequence of points including the new
point.

16. The computer-readable storage medium of claim 15,
wherein after appending the intersection point to the
sequence of points, the method further comprising:

modifying the visual representation of the graphical

object by removing a loop created by the intersection
between the line segment corresponding to the two
consecutive points and the last rectilinear line segment.

17. The computer-readable storage medium of claim 16,
wherein the visual representation is modified prior to obtain-
ing another new point for inclusion in the sequence of
points.

18. The computer-readable storage medium of claim 16,
wherein modifying the visual representation includes dis-
playing a line segment from the intersection point to the new
point.

